Modelling ol

SUMMER TERM 2020

constraints

E(f) large
E(f) small

LECTURE 22
Advanced Variational Modeling

Michael Wand - Institut fur Informatik - michael.wand@uni-mainz.de

for

inite

-ler

nctional

nents

—quations

We got a basis

Linear Ansatz
= We use a linear ansatz:

FOO) = F) =) Aiby(9)
=1

= f lives in a finite dimensional subspace
= Coordinates: 14 ... 1,

Linear Functional Equations

Abstract notation
Lf+g=0
Vx €D:Lf(x)+ g(x) =0

We cannot solve that
= |nfinitely many conditions

= Subspace:
extremely unlikely to permit exact solution

L east-Squares!

Abstract notation
Lf+g=0
Vx €D:Lf(x)+ g(x) =0

What to do instead?

Least-squares:

j (Lf(x) + g(x))zdx — min
D

..Least-Squares...

Least-Squares:

j@ (LG + 9(0) dx

..Least-Squares...

Least-Squares:

f@ (LG + 9(0) dx

= | ()’

2(Lf(x))g(x)

g(x)*dx

..Least-Squares...

Least-Squares:

f@ (LG + 9(0) dx

= [(Lr)" +2(LF)9 + 9(0dx
D

Now:

FO) =) Aiby()
=1

..Least-Squares...

Least-Squares:

1

2

(2 /h-Lbi(x)> +2 (Z AiLbl-(ao) 969 + 9’
=1 =1 |

dx

..Least-Squares

Least-Squares:

2

f (Z AiLbi(x)> + 2 (Z AiLbi(x)) g(x) + g(x)*|dx
D i=1 _

=1

— Zn:z,li,lj jDLbl-(x)Lbj(x)dx + ZZ/L- jDLbi(x)g(X)dx

1=1j=1

+ L}gz(x)dx

Least-Squares Objective

Objective Function:
ATMA+2b"A+¢

with
D

b=| [L@oadr
(D :)

c = ng(x)dx

Normal Equations

Objective Function:
ATMA+2bTA+¢

Minimization:

7o(ATM A + 2bTA + ¢)
=2M A + 2b

Solve:
MA=-b

Alternative: Garlerkin Method

Abstract notation
Lf+g=0
Vx € D:Lf(x) + g(x)

Alternative option?

Residual perpendicular to subspace:

|

n |
\L) Aibi(x) + g(x),bi(x)) =0
2

]
=
s

Vi

| |

Alternative: Garlerkin Method

|
|

| n
L) Aibi(x) + g(x), bi(x)
3

= > AilLbi (), bi(0) + (9B ()
1=1

We obtain...

Solve:
MA=-b

with

M = f Lb;(x)bj(x)dx
D

b= < fbi(x)g(x)dx
D

Difference to Least-Squares

Solve:
MA=-b

with

/-

\. 7

b=(--- ijxx)g(x)dx)
D

(Same solution, but different system)

(Half-Serious) Example:

Plugging in the Rendering Equation
(Least-squares)

Least-Squares Objective

2

K :]
J’ [Ab,(x,w) = Eg(x,w) ~ J‘ (z Aibi(x,w)\px(wl,wz)mos g, dw | dwdx

SXQLizl w,ea \ i=t) J

Mo . 1’

= J' [b (x,w) - Ej(x,w) =Y 4, J'bi(x,wl)~px(wl,w2)~cos 6,dw |

5xQ|_i=l =1 w,eQ _I

=3 > 2.2, Jbi(x,w)bj(x,w)dwdx
-3 2 Ibi(x,w)Eo(x,w)dwdx

i=1 SxQ

=33 24, | bi(x,w)- J'bj(x,wl)~px(wl,w2)~cos 6,dw dwdx
j=1i=1 SxQ w,eQ
-3 4, Ibi(x,w)~E0(x,w)dwdx

i=1 SxQ

+ J'Eo(x,w)zdwdx

SxQ

+Zﬂi
i=1

J' E,(x,w)- Ibi(X,W1)~pX(W1,WZ)~COS 0,dw dwdx
xQ

S w,eQ

=33 24, | bi(x,w)- J‘bj(x,wl)-px(wl,wz)wos 6, dw dwdx
i=1 j=1 SxQ w,eQ

(there might be typos...)

n
+ZAi
i=1

J' E,(x,w)- J‘bi(x,wl)-px(wl,wz)cos 6,dw dwdx
xQ

S w,eQ

P XA [hw) e (wyw) cos O, dw - b (X W) p, (W, w) cos 6,dw dw dX

i=1 j=1 SxQ w,eQ w,eQ

Linear System

MA=-b
with:

m, = jbi(x,w)bj(x,w)dwdx

SxQ

- [b, (x,w)- 'bj(x,wl)-px(wl,wz)-cos 6, dw dwdx

SxQ w,eQ

- [bi(x,w)- [b,(x,w,)-p, (W, ,w,) cos & dw dwdx

SxQ w,eQ

+ J'bi(x,wl)-px(wl,wz)-cos 6 dw - J'bj(x,wl)-px(wl,wz)-cos 6, dw dwdx

SxQ w,eQ w,eQ

bi:ZI E,(x,w)- Jbi(x,wl)-px(wl,wz)-cos 6, dw dwdx — Ibi(x,w)EO(x,w)dwdx

SxQ w,eQ SxQ

Some
Omitted Aspects

Further Topics

More things to be considered:
= Designing “good” basis functions
= Condition of the resulting linear system

= High-order differentials
= Distinguish test and basis functions
= Order can then be reduced by partial integration
— Split order for the two sets
— Makes numerics & algebra easier

Numerical Aspects

Solving the Linear System

Quadratic energy and quadratic constraints

= Discretization: multivariate quadratic polynomial
= Gradient: linear expression.

= Linear system properties
= Symmetric matrix
= Positive (semi-)definite
= Usually sparse

— coefficients of basis functions only interact
with neighbors (overlapping support).

= |terative sparse system solvers
— For example, conjugate gradients (SPD matrix)
— CG is available in GeoX, SciPy / NumPy, etc.

Non-Linear Problems

Type 1: Convex Problems
= (Theoretically) always solvable
= Only one global minimum

Type 2: Non-Convex Problems
= Might be very hard
= 2a: PCA — non-convex, but solvable exactly

= 2b: Non-convex but easy
= Few minima, or equivalent minima, or good initialization

= 2¢: The rest — this is difficult

Solving Non-Linear Systems

Convex functionals

= Sufficient conditions for being able to find
a global minimum:

= Convex domain (. ¢ R"
= Convex function f: Q - R
— Can be checked by He > 0 for f € C?

= Numerical descent (in principle) finds global optimum

Quadratic functions
= Unconstrained quadratic optimization is convex
= | inear system

..for “easy” problems...
Descent-Basea

Non-Linear Solvers

15t Order: Gradient Descent

Gradient Descent:

= VE = direction of steepest ascent
= Take small steps in direction —VE
« When VE = 0, a critical point is found.

= Small enough steps guarantee convergence
= In theory
= In practice: usually slow, unstable
= Does not work for ill-conditioned problems

Line Search

Gradient descent line search

= Step size for gradient descent
= Fit 1D parabola to £ in gradient direction
= Perform 1D Newton search
= |f E does not decrease at the new position
~ Try to half step width (say up to 10-20 times).

— If this still does not decrease £, stop and output local
minimum.

2nd Order Non-Linear Solvers

Newton optimization
= [teratively solve linear problems

= 2nd order Taylor expansions. Requires:
= Function values
= Gradient
= Hessian matrix

= Typically, Hessian matrices are sparse.
= Should be SPD (otherwise: trouble)

= Use conjugate gradients to solve for critical points

Newton Optimization

Newton Optimization
= Basic idea: Local quadratic approximation of E:

BX) = E(,)+ V(K)- (X=X) 2 (3 =%,)7 Hy (%,)- (X~ %,)

= Solve for vertex (critical point) of the fitted parabola
= |terate until a minimum is found (VE = 0)

Xo

Properties:

= Typically much faster convergence,
more stable

= No convergence guarantee

Newton Line Search

Line search for Newton-optimization:
= Following the quadratic fit might overshoot

= Line search:
= Test value of E at new position

= Half step width until error decreases
(say 10-20 iterations)

= Switch to gradient descent,
if this does not work

Newton Optimization

Problem:
= Steps might go uphill

= (Near-) zero or negative eigenvalues make problem ill-
conditioned.

Simple solution
= Add Al to the Hessian for a small A.
= Sum of two quadrics: A1 keeps solution at x,,
= Comprehensive method: Levenberg-Marquant

Handling Indefinite Situations

Initial state:

First Iteration:

New state:

Second Iteration:

What if | Hate Deriving the Hessian?

Gauss Newton
EG) =) fi(0? =) =) (P/i(xo)(x = X0) + /i(x0)) ?
i=1 i=1

LBFGS

= “Quasi-Newton” method

= "Black box-solver”
= Needs only gradient + function values

Non-linear conjugate gradients:
= With line search
= Usually faster than simple gradient decent

("

—asy’ Non-Linear

Problem

"Hard” Non-Linear Problem

Difficult Problem: Stereo Vision

camera 2
camera 1

Stereo Vision

camera 1 camera 2

Stereo Vision

Probability ?
distribut
compare
Yoy N kxk pixel
\\\\\\\\\\\\\ windows

camera 1 camera 2

Stereo Vision

‘Disparity Volume”.

for each . compare
pixel ..~ 12 Kxk P'XE|
o 1 windows

A

Dz

camera 1 camera 2
“Disparity Volume”
Approximation:
statistical dependencies neglected
(for example: occlusion)

Stereo Vision

Assumption:
Smooth surface

camera 1 camera 2

pot(+)

w h I
2 2
E(X|D) = Z Z match(x;) + pot (J(xi+1,j —x;;) + (Xp 41— X0 f))

Hard Constraints

Hard Constraints

Hard Constraints:
= Properties of the solution to be met exactly

= Three options to implement hard constraints:
= Strong soft constraints (easy, but not exact)
= Variable elimination (exact, but limited)
= Lagrange multipliers (most complex and general method)

Hard Soft Constraints

Simplest Implementation
= Soft constraints with large weight

E(f) = E(@ata)(£) 4 AE(regularizer) (£y with very large 1 (say 10°)

Problems
= Technigue is not exact

= Stronger the constraints — larger weights
= Condition number becomes large
= Iterative solvers (e.g., CG) are slowed down
= At some point, solution becomes impossible

Variable Elimination

Idea: Variable elimination
= We just replace variables by fixed numbers.
= Then solve the remaining system.

Example: L5

f(xg) = iy, — 4.0)

Variable Elimination

Advantages:
= Exact constraints
= Conceptually simple

Problems:
= Only works for simple constraints (variable = value)
= Need to augment system
= Not easy to implement generically

= Does not work for FE methods (general basis
functions)
= Values are sum of scaled basis functions

Lagrange Multipliers

Most general technique: Lagrange multipliers
= Works for complex, composite constraints
= General basis functions
= Exact solutions (no approximation)

Lagrange Multipliers

Here is the idea:

= Assume we want to optimize E(x;, ..., X,) subject to an
implicitly formulated constraint g(x,, ..., x,) = O.

= This looks like this:

%3 ol ‘\ v\
/¢ N '\ '\ v\
/ l \ \\\\ ¢
J N A

E A ,\\ g

VE Vg VE =AVg, g(x)=0

Lagrange Multipliers

Formally:

= Optimize E(x4, ..., X,) subject to g(x,, ..., x,) = 0.

= Formally, we want:
VE(x)=AVg(x) and g(x)=0

= We get a local optimum for:
LG(x)=E(x)+ Ag(x)
Ve, LG(x)=0
ie.:(0, .0, ,0,)LGx)=0

= A critical point of this equation

satisfies bothVE(x) = AVg(x)
and g(x)=0

VE

VE = AVg

Example

Example: Optimizing a quadric function subject to
a linear equality constraint

= We want to optimize: E(x)=x"Ax+bx
= Subjectto: g(x)=mx+n=0

We obtain: 16(x)=E(x)+g(x)=x"Ax+bx+ A(mx+n)
= V_(LG(x))=2AX+b+im
VX(LG(X)):mx+n

L' ’[(2A mj x B —b
near system:| | =]

Multiple Constraints

Multiple Constraints:
= Similar idea
= Introduce multiple “Lagrange multipliers” 4.
E(x)— min
subjectto: Vi=1..k:g.(x)=0

Lagrangian objective function:
k

LGa(x)=E(x)+ Z/ligi (%)
i=1

V,aLG(x)=0
ie.:(0, 0, ,0, 4@, JLG(X)=0

Multiple Constraints

Example: Linear subspace constraints
" E(x)=x"Ax+bx Subjectto g(x)=Mx+n=0

* LG()=E(x)+ Y 4,8, (x)=x"Ax+bx+ Y 4, (mx+n,)
i=1 =1

= Linear system: =
M 0 \A —n

= Remark: M must have full rank for this to work.

What can we do with this?

Multiple linear equality constraints

= Constrain
= multiple function values
= differential properties
= integral values

= Area constraints:

= Sample at each basis function of the discretization and
prescribe a value

= Need to take care:

= We need to make sure that the constraints are linearly
independent at any time

What can we do with this?

Inequality constraints
= There are efficient quadratic programming algorithms.
= |dea: turn on and off the constraints on demand
= Methods: Simplex, interior point methods

Manifold Constraints

Optimization on Unit Sphere

Solution: Local Parameterization
= Current normal estimate tangent,

Tangent parameterization
= New variables u, v
= Renormalize

= Non-linear optimization

= No degeneracies n(u, v) = ng +u-tangent,
+v-langent,

[Hoffer et al. 04]

Optimization on SO(3)

Orthonormal matrices
= Local, 1st order, non-degenerate parametrization:

0)
. “ Pl A= Ajexp(Cx)
“B -y 0 = A,(I+ G

= Optimize parameters a, B, v, then recompute A,

tangent,

/> tangent,

c.f: normal »
optimization

n(u,v) = ny+u-tangent,
+v-tangent,

The Euler Lagrange
—quatior
(connection to PDEs)

The Euler-Lagrange Equation

Conversion
= [ntegral energy minimization to differential equation

= Specific form
fila,b]>R

E(f)=[F(x, f(x), f'(x))dx

= - unknown function
= [energy "density” at each point x
= [may depends on

— position x

~ function value 7 (x)

— first derivative 1'(x).

The Euler-Lagrange Equation

Now we look for a minimum:

= Necessary condition:
nd " .

= — E(f)=0 (critical point
i FU) (point)

= |n order to compute this:
= Approximate f by a polygon (finite difference approximation)

N

= 1= (0411 (X0 V)
= Equally spaced: x; — x.; =h

. | v
(Formalized more precisely Y1 V. 10

. o o ; y
using functional derivatives) * Vs Va y. v V7
5 6

The Euler-Lagrange Equation

Minimum condition:

b y
()= [FGe f0, £ 0 "y, Vo

3 y4 y5 y6 y7

E(f)~E(y)= ZF(X Y hy”]

(y1'’ 8)E
:Zva(Xi'yi’yi _yi—l)
i h

Z” Vi—=Yi4 0 1 Vi=Via |l 4
— 6 F X., . ! ! +a _F X,‘; i?
i (i h j ' *h (Vi h j !

The Euler-Lagrange Equation

Minimum condition:

~ 1 YVi—=Vi4 (:) 1 Yi—JVia —:1
VyE —Z azF(X,-,y,-; h j 1 +83 EF(Xi’yi’ h j 1
=2 : :

L 0 ’ B

ithentry:

i~ Yi— Vi 1 Yian — Vi Yi— Vi
a)’iE:62F£Xi’yi’ h 1j_h[a3F£Xw.Vir 1h]_631:()(1"}’1" b ljj

Let h — 0: continuous Euler-Lagrange equation

52F(X,f(X),f'(X))—d%@gF(X;f(X),f'(X)) =0

Example

Example: Harmonic Energy
£)= | 15 100 o
FOx, £, f'(x)) = f'(x)°

0, F (%, f(x), f'(x)) —%@J(X;f(X),f'(X)) =0

0220, (/) =0

d . d
S0——2—f(x)=0
dx dxf()
dZ
& —f(x)=0
dXZf()

Generalizations

Multi-dimensional version:
f R o2O->R
E(f)= [Floty r X4 fX),0,, f(X),, 0, F(X))dx, ..dx,

Necessary condition for extremum:

5f (x) ,ledx 8f

AN 0
f = Ox

This is a partial differential equation (PDE).

Example

Example: General Harmonic energy
E(harmonic)(f) _ j(Vf(X))Z dx

Euler Lagrange equation:

o f(xX)+..+ o

2 2
OX 4 OX

Af(x) = [f (X)) =0

Summary

Euler Lagrange Equation:

= Converts integral minimization to ODE/PDE
= Critical point in function space
= Necessary, but not always sufficient condition for extremum

= Applications
= No big change from numerical point of view
— We could directly optimize the integral expression

— Similarly complex to compute (boundary value problem
for a PDE vs. variational problem).

= Analytical tool
— Helps understanding the minimizer functions.

Example 2
Reconstruction

from Point Clouds

Plane Blending Method

Initial data

® Estimate normals

Signed distance
O func.

Marching cubes

Final mesh

Plane Blending Method

®o—

unoriented normals
PCA among k-nearest neighbors

Initial data
Estimate normals

Signed distance
func.

Marching cubes

Final mesh

Plane Blending Method

®o—

consistent orientation
(e.g.: region growing)

Initial data
Estimate normals

Signed distance
func.

Marching cubes

Final mesh

Plane Blending Method

s
'
/
/
!
i
I
I
1
1
@
\
\
A

global signed distance field
blend between signed distance functions

Initial data
Estimate normals

Signed distance
func.

Marching cubes

Final mesh

s
'
/
/
!
i
I
I
1
1
@
\
\
A

Plane Blending Method

signed distance function:
plane blending

Initial data
Estimate normals

Signed distance
func.

Marching cubes

Final mesh

For Example: IMLS

Ly, x = %) - wllx = x1)

ST (X — %0 (partition of unity weights)

FG0) =

Plane Blending Method

Initial data
Estimate normals

Signed distance
func.

Marching cubes

Final mesh

Plane Blending Method

Initial data

Estimate normals

Signed distance
func.

Marching cubes

Final mesh

Plane Blending Method

Initial data

Estimate normals

Signed distance
func.

Marching cubes

Final mesh

Outer Loop

Outer Loop
= Bounding box

= Divide into cubes
= Regular grid

= Tessellate each sub cube

Marching Cubes

Marching Cubes:

= Local problem: /%

= Cube with 8 vertices

= Fach vertex is either inside or
outside the volume

(ile. f(x) <0 or f(x)=0) 6
= How to triangulate this cube?
= How to place the vertices?

Problems

Plane-Equation-Blending Method (“ILMS")
= "Implicit-Moving-Least-Squares’
= Consistency order 0
= “partition of unity” (normalize weights)

Shortcomings

= Only works near points
= Division by zero otherwise

= Thus cannot fill larger holes
= Local reconstructions only
= Cannot (easily) handle varying sampling density

Variational Model

Implicit Function

Implicit surfaces
= Smooth implicit function
ffR3 >R
M = {x|f(x) = 0,x € R3}

= Flexible topology

d
boti— ——
f(X)) ; b () byt /@\\ o

Data Term

Neg-log. Baysian rule:
E(M|D) ~ E(D|M)+ E(M)

Data Term

n

E(D|M) = 2 (f(xi)Z + (ni —_ Vf(Xi))Z)

=1
Regularizer (Prior)

E(M) = fQqu<x>ujdx

Solving

Objective Function

(1 + (o= 7760 + [ol
=1 - _

N -

data term

regularizer

Discretization (Example)
= Regular grid
= Finite differences for Hy (using coefficients on grid)

= |nterpolation with basis functions for data term
(sub-grid precision)

= Solve linear system with conjugate gradients

Direct Solution

Simpler [Carr et al. 2001]

= Place two more in normal and
negative normal direction

= Prescribe values +1,0,-1

Radial Basis Functions

Radial basis functions [Carr et al. 2001]

= Globally supported functions
= Thin-plate spline basis functions:
||x—x0||21n||x—xo|| (2D) ||x—x0||3 (3D)
= Guarantee minimal integral second derivatives.
= Problem: complexity

= Every basis function interacts with each other one
= Dense nxn linear system

= Fast multi pole method
= Clusters far away nodes in bigger octree boxes
= O(log n) interactions per function, overall O(nlog n)

More Complex
Application Examples

Animation Reconstruction

Variational Animation Modeling

f(x, t) — deformation field

J X —point on urshape S

4
i

Variational Framework

E(f) = Ematch (f) + (Erigid + Evolume + Eaccel + Evelocity)(f)
constraint s - _def:m_:t—io_ o
T n
g 2

Eoen (£)=3 3 dist (d,, f(S))

t=1 i=1

T 2

E . (f)= Iah@d(xj v f(x,t) V _f(x,t)-1 Fdx

V(S)

E e ()= [0, (v, fox.0- 1) dx

V(S)
2
a2
E__. (f):jwacc(x) 2f(x,t) dx
g ot
2
[t
Evelocity (f)zjwvelociw (X) _f(X,t) dX

P \ ot)

Meshless Modeling of
Deformable Shapes

and their Motion

Bart Adams'? Maks Ovsjanikov! Michael Wand?
Hans-Peter Seidel* Leonidas J. Guibas!

!Stanford University
2Katholieke Universiteit Leuven
"Max Planck Center for Visual Computing and Communication
*Max Planck Institut Informatik

Data Set:
"Popcorn Tin"

94 frames
data: 53K points/frame
rec: 25K points/frame

[M. Wand, B. Adams, M. Ovsjanikov, M. Bokeloh, A. Berner,
P. Jenke, L. Guibas, H.-P. Seidel, A. Schilling, 2008] (data set courtesy of P. Phong, Stanford. U.)

